
Textual Authoring for Interactive Narrative

Samuel Lynch1, Charlie Hargood1, and Fred Charles1

Creative Technology Department, Faculty of Science and Technology,
Bournemouth University, Poole, Dorset, UK

<i7420737, chargood, fcharles>@bournemouth.ac.uk

Abstract. Narrative design and implementation in interactive software
has always possessed an intrinsic issue, in that the person or persons with
the responsibility of authoring the narrative will most likely lack ability
in programming. Because the narrative does eventually become imple-
mented in software, the influence the technical side has on the creative
side is unavoidable. The design of the March22 Engine, its scripting lan-
guage, and its accompanying authoring tool are all designed to facilitate
those of least programming ability, whilst not limiting those of greater
ability. Whilst the primary focus of the SDK is in the production of
visual novel games, the authoring tool was designed generically enough
that there is use for it outside of the one genre of interactive narrative.
By making the scripting language as similar to a screenplay as possible,
and showing the flow of narrative via charts, the writer is left with as
little programming requirements as possible, whilst still able to produce
quality narrative.

Keywords: Interactive narrative, authoring tools, domain specific lan-
guage

1 Introduction

In interactive narrative - specifically game software - the scope of the project
might necessitate the utilisation of an author, possibly with experience writing
interactive fiction, but not necessarily, especially as it remains difficult to find
authors with the required experience. Even one with experience in writing in-
teractive (i.e. narrative that changes flow-based on user interaction) may not
possess experience, ability, or skill with programming. Because interactive nar-
rative is almost always software-based, programming is an unavoidable obstacle
to quality narrative (as well as a bug-free experience); an obstacle that, in most
instances, the author is expected to overcome.

This is an important issue to address, because it creates an entry barrier
to the Writer position in interactive software. Creative positions should not
possess entry barriers beyond the intrinsic requirement to produce assets in
their area (e.g. Autodesk Maya for 3D artists). Ideally, the writer should have
zero requirements other than the ability to write, and the requirement of having
programming competency- however minimal- is a large one. Notwithstanding is
the immense task of writing interactive innately; a basic component of writing



any narrative is referring to prior events in the story, with branching narratives
requiring multiple versions of the similar text to accommodate this, so while
facilitating the author is always desirable, it becomes a necessity with complex
branching narratives.

To that end, the March22 Engine was designed and implemented with ease
of use in mind. Not just for authors, but for developers and artists alike. With a
low entry barrier to usage, the content created can be of a quality more reflective
of the developer’s respective abilities. And with the framework being built upon
the Unity 5 engine- as well as covered by the permissive MIT license- there
are no monetary entry barriers either (besides Unity’s highly permissive royalty
scheme).

2 Background

Developing accessible solutions for the creation of interactive narrative can be
difficult, and this is even more so the case when trying to create authoring
systems which bridge the potential gap between the underlying narrative systems
generating the compelling narrative experiences for the users. For more than a
decade, authoring tools have been designed and devised often for the sole use of
authors of these pre-existing interactive narrative systems, such as EmoEmma [2,
1], Thespian [5], Expressionist [4], also applied to the topic of location-based
narratives [3].

It has been identified that there exists differing ways and strategies to make a
story interactive, and that the creative approaches suggested by these narrative
systems differ fundamentally. This further increases the difficulty to find any
commonality between the approaches for ‘Interactive Storytelling from a creators
point of view.

Beyond the requirement for authoring tools to be supporting the underlying
technologies utilised to generate interaction and multiple story lines, the creation
process in itself remains an unanswered problem even though there has been
attempts to leverage this process [6, 7].

3 Design

The decision to use the Unity engine was the eventual choice, not the first.
Originally, the engine was designed and built in C++, but this proved to be far
too complex for the scope, as it meant most simple features had to be written
from scratch. It provided extremely lightweight software, but could only feasibly
run on Windows and Linux. It never came to it, but the ability to extend script
functionality was planned to use either ECMAScript or Lua, to prevent the need
to recompile the C++ source code.

A second version of the engine was produced, written in Lua via lpp-vita
for PS Vita, and Love2D for PC/Mac/Linux. While this version was popular
among ‘homebrew’ PS Vita developers, it was not future-proof and shared a
similar problem to the C++ version, and as such was discontinued. It did possess



a feature that other versions still lack, and that is precompilation; the scripts
would be written in .rpy format (a slightly modified implementation of Python
for use with the Ren’Py engine) and compiled into Lua as an array of objects,
which could then be JIT compiled. This had the benefit of facilitating writers
familiar with Ren’Py (as both Ren’Py and March22 are visual novel engines)
but the downside of an extra step for authors to concern themselves with.

The Unity port was re-written and re-designed from the ground-up to be
the best possible implementation. It could become a framework for narrative
in all games, as opposed to being limited to an engine for a specific genre,
and Unity itself is already an easy-to-use tool with great documentation, so it
helps promote the idea of ease of access. In addition, Unity utilises a package
system to install modules/frameworks such as March22 with little difficulty,
and boasts greater performance and wider platform coverage than alternative
solutions such as Ren’Py (which supports Win/Mac/Linux, Android/iOS, and
ChromeOS, whereas Unity supports up to twenty-seven unique platforms).

With the idea of facilitating the authors first and foremost, the March22
scripting language was designed to be as close to regular writing as possible. This
essentially boils down to the functions being very simple and easy to remember,
as well as very few functions being necessary to every script. But to prevent
the language limiting developers, the ’CustomFunction’ module can be utilised
to expose more functionality to the script. For example, if one were to use the
March22 framework in a Pokemon fan adaptation, a custom function would need
to be made to, say, commence a battle at a certain point in the narrative. The
script/narrative files were intended to be simple plain-text, so that they could
be authored, edited, and ”exported” in any software of choice.

However, a number of issues can arise from this, ranging from metadata ex-
ported from Microsoft Word or similar corrupting the script, to the script file
becoming unmanageable with many lines. The problem of unsupported charac-
ters (from various encodings of Unicode) is also an issue. Therefore, it is most
ideal to create a centralised tool with which to produce the scripts, while still
only exporting/importing a plain-text file, so that ’power-users’ can still use
their preferred editor at their own leisure. This was the authoring tool.

4 The Authoring Tool

The tool, just as the engine it is made for, is built for ease of access and use.
Building it in HTML and JavaScript made the most sense at the time for this
goal, as this meant there was no concern for supporting specific platforms or
devices (i.e. any device with a web browser), and HTML already possesses all
the required frameworks (i.e. text boxes and input). Additionally, it removes the
requirement for extra software; only a web browser is required.

For frameworks that did not exist intrinsically, both HTML and JavaScript
possess a wide range of open-source projects that provide the required function-
ality. Frameworks such as VisJS for visualising the flow of the narrative, Ace for
editing the script by hand, and FileSaver.js for exporting the script files. The



Fig. 1. Authoring tool’s GUI (prototype version)

most important of these three being the foremost, as visually representing the
flow of an interactive narrative is invaluable to an author, as it helps prevent
undesired crossover (where in interactive narrative, a branch being experienced
by the user refers to a branch not experienced) or indicating where a story be-
comes too complex (i.e. a three-hundred node story at one-thousand words per
node will be visually daunting, indicating its complexity when read).

Because the engine is primarily designed for visual novel games- with other
forms of interactive narrative being secondary- the authoring tool has to be aware
of the necessary components of a visual novel script. A visual novel game is essen-
tially an interactive narrative that utilises sound and visuals (to a greater extent
than others, such as HyperText-based narrative) to further engross the player.
Therefore, these necessary components are chiefly character/sprite display, back-
ground/scenes, music and sound effects, etc. While the prototype version of the
authoring tool does not display this information to the user yet, the backend
tracks all the required resources on a per-script basis, which paves the way for
exporting entire projects directly from the authoring tool. Were the authoring
tool cloud-based, each project could have its assets contained and organised, so
aspects such as reusing existing assets would be easier.

Originally, the authoring tool was a simple visualiser; the user added nar-
rative via a text box, including functionality and metadata, and the flow dia-
gram would update to match the input. Additionally, the script compiler was
meshed-out in JavaScript, so that the script could be soft-compiled for error-
checking/debugging, as well as allowing the import/export of the script files in
their raw format. However, maintaining a compiler in both C# and JavaScript
was taxing. While Unity does utilise a script language akin to JavaScript called
’UnityScript’, it is not entirely the same and is not necessarily inter-operable
with web-based JavaScript. Development versions have phased out the compiler
completely, in favour of saving in-progress work as JSON, and exporting the
script files when needed.



Earlier versions of the tool relied almost entirely on the compiler for the
visualisation, meaning that larger scripts (i.e. one-hundred-thousand words or
more) produced incoherent and unmanageable charts with too many nodes. It
also meant that linking nodes had to be written into script by hand- introducing
more programming to the author. Later versions introduced the ability to link
nodes via the visualiser, by dragging arrows to the destination node, and the
code to achieve this would be inserted into the narrative automatically.

These later versions also improved on the customisation of the visualiser;
previously a node’s position was locked and determined by the compiler, which is
ideal only if the compiler is perfect. Otherwise, the user must be able to move the
nodes freely, so as to rearrange them in a way that is easier to understand whilst
writing. Interactive narrative has a tendency to become difficult to visualise, due
to the erratic flow of narrative- as is expected with interactive media.

A standard pipeline for writers in game narrative production could require
the game script to be processed (i.e. checked for technical issues rather than
grammatical or narrative issues) by a programmer, after being edited and ’com-
pleted’. This is a clear waste of resources that could be minimised by having
the game script processed by the writer. Since the writer generally lacks pro-
gramming ability, this requirement would need to be lessened in order to save
resources. The scripting language minimises it but does not eliminate it by mak-
ing the language as simple to understand as possible. The authoring tool lessens
it further by providing an auto-complete to function names, with plans to add
the ability to select functions from a list to place into the script.

The language additionally possesses inline functionality; this essentially means
that engine functions can be called in the middle of narrative. The ’typewriter
effect’, where text appears on-screen at a certain speed rather than all at once,
permits the use of these inline functions to create better experiences for the
player. A minimalistic use of this could be to force pauses in the typewriter ef-
fect, creating a unique flow of narrative, while a more daring use might be to play
a gunshot sound effect and shake the interface whilst a character is speaking.
This functionality can be useful and interesting to writers, as it provides them
with more storytelling devices. However, it also acts as a double-edged sword; it
presents yet another aspect to have to educate the user/author about in order
to fully utilise the engine, and it cannot be easily integrated into the authoring
tool.

Currently, the intention is to repackage the authoring tool to be an extension
within Unity, while also maintaining the ability to use a web-browser. This is so
that the ability to compile/debug script is available to the writer to minimise
or eliminate error, without having to re-code the compiler into JavaScript. And
this ability can simply be disabled when run from a web-browser, so the author
can still write script, but cannot debug. Additionally, the prototypical interface
needs to be redesigned to be more approachable. Fortunately, the tool being in
HTML- with CSS- facilitates the creation of designs.



Fig. 2. Standard pipeline versus the March22 pipeline.

5 Conclusions

The system and tools are far from complete; the current development task for
the engine itself is reworking how script functions are handled entirely (and over-
hauling the compiler with it), which in turn means that the authoring tool needs
to be adapted to match this. The tool does not possess the compiler, but does
need to be aware of available functionality, and the rework affects the aspect of
the framework for extending the language (i.e. adding extra functions). Then the
problem arises of when there are too many functions- custom or otherwise; this
is a problem from both a regular and technical standpoint. The engine currently
offers twenty-five built-in functions, with less than half of these being exclusively
useful to Visual Novel game development, so while this is not too high a number,
care must be taken when adding more functionality, lest it overcomplicate the
use of the framework.

Programming a tool that essentially exposes the programming-uninitiated
to programming presents an especially trying task, since it can be difficult to
ascertain whether an aspect of either the tool or the engine is too much for even
an experienced programmer, let alone one with less or minimal knowledge in the
area. Hiding as much technical (i.e. unnecessary to most persons) information
from the user, and providing a friendly interface for them, is as much as can
be done without direct testing and feedback. The same is true for the script
language itself; while feedback from those who have sampled the tool has been
positive, the feedback from those who genuinely utilise the tool for a project is
more desirable.

The back-end of the engine has objectively benefited from having been rewrit-
ten in several languages. Certain aspects such as the compiler has been optimised
with every rewrite, making it more efficient with larger scripts that contain many



multimedia elements. Some parts of the back-end have been deprecated entirely,
such as Unicode (i.e. multi-lingual) parsing, since Unity/C# provides a far more
optimised system for this.

The key intention of the March22 framework and its scripting language was
to provide accessibility to the inexperienced, and power to the experienced. The
most basic scripts that March22 can run could be just five sentences; no func-
tions, no metadata required. Meanwhile the most complex scripts are akin to
Ren’Py script, with multiple nodes interconnected, and could be in a quintuple-
digit line count (note that visual novel games are generally composed of multiple
script files to create the full game/story). This intention is currently realised, but
care must be taken so as to not overcomplicate the operation of the framework.
Documentation on how to use the engine is being created alongside the docu-
mentation of the source code, with tutorials from getting started with the engine
to publishing a title using it.

References

1. Marc Cavazza, David Pizzi, Fred Charles, Thurid Vogt, and Elisabeth André. Emo-
tional input for character-based interactive storytelling. In Proceedings of The 8th
International Conference on Autonomous Agents and Multiagent Systems-Volume
1, pages 313–320. International Foundation for Autonomous Agents and Multiagent
Systems, 2009.

2. Fred Charles, David Pizzi, Marc Cavazza, Thurid Vogt, and Elisabeth André.
Emoemma: Emotional speech input for interactive storytelling (demo paper). In
The Eighth International Conference on Autonomous Agents and Multiagent Sys-
tems.

3. David E Millard and Charlie Hargood. Location location location: Experiences
of authoring an interactive location-based narrative. In Interactive Storytelling:
9th International Conference on Interactive Digital Storytelling, ICIDS 2016, Los
Angeles, CA, USA, November 15–18, 2016, Proceedings 9, pages 419–422. Springer,
2016.

4. James Ryan, Ethan Seither, Michael Mateas, and Noah Wardrip-Fruin. Expres-
sionist: An authoring tool for in-game text generation. In Interactive Storytelling:
9th International Conference on Interactive Digital Storytelling, ICIDS 2016, Los
Angeles, CA, USA, November 15–18, 2016, Proceedings 9, pages 221–233. Springer,
2016.

5. Mei Si, Stacy C Marsella, and David V Pynadath. Thespian: An architecture for
interactive pedagogical drama. In AIED, pages 595–602, 2005.

6. Ulrike Spierling, Sebastian A Weiß, and Wolfgang Müller. Towards accessible au-
thoring tools for interactive storytelling. In International Conference on Technolo-
gies for Interactive Digital Storytelling and Entertainment, pages 169–180. Springer,
2006.

7. Nicolas Szilas and Steven Wingate. Exploring new approaches to narrative modeling
and authoring. In Interactive Storytelling: 9th International Conference on Inter-
active Digital Storytelling, ICIDS 2016, Los Angeles, CA, USA, November 15–18,
2016, Proceedings, volume 10045, page 464. Springer, 2016.


